

SPECIFICATION SHEET

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

SPECIFICATION SHEET NO.	S0409 - XF48M00000S420				
ORIGINAL MFG/PART NO.	TGS Crystals/CM32 48M0A10-20-30-40-40 TLF				
NEXTGEN PART CODE	XF48M00000S420 Indicate This Code For RFQ/Order				
DATE	Apr. 9, 2025				
REVISION	A2 Updated With Most Recent Data				
DESCRIPTION AND	MHz SMD Crystal 4 pads, XF series, Seam Seal,				
MAIN PARAMETRICS	Dimension L3.2*W2.5*H0.7mm 48.000MHz, Tolerance ±10ppm, Load Capacitor 20pF Frequency stability ±30ppm; Operating Temp. Range -40°C ~+85°C ESR 40ohm Max, Reflow Profile Condition 260 °C Max. Package in Tape/Reel, 3000pcs/Reel RoHS/RoHS III Compliant				
CUSTOMER					
CUSTOMER PART NUMBER					
CROSS REF. PART NUMBER					
MEMO					

VENDOR APPROVE

Issued/Checked/Approved

Effective Date: Apr. 9, 2025

CUSTOMER APPROVE			

4/9/2025

Date:

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

MAIN FEATURE

- MHz SMD Crystal L3.2*W2.5*H0.7mm 4 Pads
- · Low Cost, High Precision, High Frequency Stability
- Short Lead time
- Reflow Profile Condition 260 $^{\circ}$ C Max.
- Cross More Competitors Part
- REACH/RoHS/RoHS III Compliant

APPLICATION

- Bluetooth, Wireless Communication Set
- Communication Electronics

Image shown is a representation only.

Exact specifications should be obtained from the product dimension.

ELECTRICAL CHARACTERISTICS

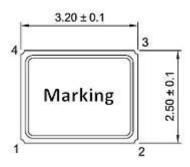
- See Page 6~10 For Different Part Code.
- All Products Parameters are Subject To NextGen Components' Final Confirmation.

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

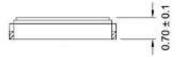
HOW TO ORDER

• Please Follow Up Part Code Guide And Indicate NextGen Part Code <u>XF48M00000S420</u> For RFQ and Order.

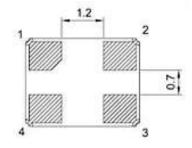
PART CODE GUIDE



CODE	NAME	KEY SPECIFICATION OPTION
XF	Product Series Code	MHz SMD Crystal, Seam Seal, 4 Pads Case Dimension L3.2*W2.5*H0.7mm
48M0	Frequency Range Code	48M0: 48.0MHz
0000\$420	Internal Control Code	Letter A~Z, a~z or digits (0~9)
XX	Special/Custom Parameters Code	Blank: N/A XX: Letter A~Z, a~z or digits (0~9) for Special/Custom Parameters

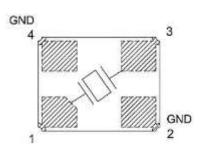

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

DIMENSION - Unit: mm

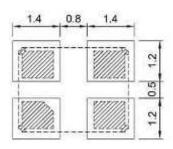

Top View

Side View

Bottom View


Connection

#1 Crystal


#2 Ground

#3 Crystal

#4 Ground

Recommend Pad Layout

4/9/2025 4

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

GENERAL SPECIFICATION

	CVAADOL		VALUE			CONDITION
PARAMETER	SYMBOL	MIN.	TYPE	MAX.	UNIT	
Mode of Vibration Code			Fundame			
Frequency Tolerance	△F/F0	±10	-	±50	ppm	at 25°C±3°C
Load Capacitance	CL	7	-	20	pF	
Frequency Stability	Тс	±10	-	±50	ppm	
Operating Temp. Range	TOPR	-40	-	+125	°C	
Storage Temp. Range	TSTG	-55	-	+125	°C	
Drive Level	DL	-	-	100	μW	
Insulation Resistance	IR	500	-		mΩ	@100V ± 15VDC
Shunt Capacitance	CO	-	-	3.0	pF	
Aging per year	Fa	-3	-	+3	ppm	1st Year

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

ELECTRICAL PARAMETERS – FOR DIFFERENT PART CODE- Ta = 25°C

PART CODE	FREQUENCY RANGE MHz	FREQUENCY TOLERANCE ppm	LOAD CAPACITANCE pF	FREQUENCY STABILITY ppm	OPERATING TEMPE. RANGE	EQUIVALENT SERIES RESISTANCE Ω Max.
XF8M000000S410	8.000000	±10	10	±30	-40 ~ +85	350
XF8M000000S412	8.000000	±10	12	±30	-40 ~ +85	350
XF8M00000S4118	8.000000	±10	18	±50	-40 ~ +125	300
XF11M05920S420	11.05920	±10	20	±30	-40 ~ +85	100
XF12M00000S110	12.00000	±20	8	±30	-40 ~ +85	100
XF12M0000S4310	12.00000	±30	10	±30	-40 ~ +85	80
XF12M00000S410	12.00000	±10	10	±30	-40 ~ +85	100
XF12M00000S412	12.00000	±10	12	±30	-40 ~ +85	100
XF12M00000S101	12.00000	±30	18	±30	-20 ~ +70	100
XF12M00000S420	12.00000	±10	20	±30	-40 ~ +85	100
XF12M28800S412	12.28800	±10	12	±30	-40 ~ +85	100
XF12M28800S415	12.28800	±20	15	±30	-40 ~ +85	80
XF13M52127S420	13.52127	±10	20	±30	-40 ~ +85	100
XF13M56000S420	13.56000	±10	20	±30	-40 ~ +85	100
XF13M82400S412	13.82400	±10	12	±30	-40 ~ +85	100
XF14M31818S412	14.31818	±10	12	±30	-40 ~ +85	100
XF14M31818S420	14.31818	±10	20	±30	-40 ~ +85	100
XF14M74560S420	14.74560	±10	20	±30	-40 ~ +85	100
XF16M00000S110	16.00000	±20	8	±30	-40 ~ +85	80
XF16M00000S409	16.00000	±10	9	±30	-40 ~ +85	100

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

ELECTRICAL PARAMETERS – FOR DIFFERENT PART CODE- Ta = 25°C

PART CODE	FREQUENCY RANGE MHz	FREQUENCY	LOAD CAPACITANCE pF	FREQUENCY STABILITY	OPERATING TEMPE. RANGE	EQUIVALENT SERIES RESISTANCE Ω Max.
XF16M00000S410	16.00000	ppm ±10	10	#30	-40 ~ +85	80
XF16M00000S412	16.00000	±10	12	±30	-40 ~ +85	100
XF16M00000S418	16.00000	±50	18	±30	-40 ~ +85	80
XF18M00000S412	18.00000	±10	12	±30	-40 ~ +85	80
XF18M43200S420	18.43200	±20	20	±30	-40 ~ +85	80
XF19M20000S407	19.20000	±10	7	±30	-40 ~ +85	60
XF20M00000S408	20.00000	±10	8	±30	-40 ~ +85	60
XF20M00000S409	20.00000	±10	9	±30	-40 ~ +85	60
XF20M00000S415	20.00000	±10	15	±30	-40 ~ +85	60
XF20M00000S416	20.00000	±10	16	±30	-40 ~ +85	60
XF20M00000S418	20.00000	±10	18	±30	-40 ~ +85	60
XF20M00000S420	20.00000	±10	20	±30	-40 ~ +85	60
XF22M11840S420	22.11840	±10	20	±30	-40 ~ +85	60
XF24M00000S409	24.00000	±10	9	±30	-40 ~ +85	60
XF24M00000S410	24.00000	±10	10	±30	-40 ~ +85	60
XF24M00000S412	24.00000	±10	12	±30	-40 ~ +85	60
XF24M0000S4112	24.00000	±20	12	±50	-40 ~ +125	50
XF24M00000S415	24.00000	±10	15	±30	-40 ~ +85	60
XF24M00000S416	24.00000	±10	16	±30	-40 ~ +85	60
XF24M000S12418	24.00000	±10	18	±20	-40 ~ +85	60

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

ELECTRICAL PARAMETERS – FOR DIFFERENT PART CODE- Ta = 25°C

PART CODE	FREQUENCY RANGE MHz	FREQUENCY TOLERANCE ppm		FREQUENCY STABILITY ppm	OPERATING TEMPE. RANGE	EQUIVALENT SERIES RESISTANCE Ω Max.
XF24M000S13418	24.00000	±10	18	±30	-40 ~ +85	60
XF24M00000S418	24.00000	±30	18	±50	-40 ~ +85	60
XF24M00000S101	24.00000	±10	18	±10	-20 ~ +75	40
XF24M00000S002	24.00000	±50	20	±50	-20 ~ +70	50
XF24M00000S420	24.00000	±10	20	±30	-40 ~ +85	60
XF24M54545S001	24.54545	±30	12	±50	-40 ~ +85	80
XF24M57600S412	24.57600	±10	12	±30	-40 ~ +85	60
XF24M57600S420	24.57600	±10	20	±30	-40 ~ +85	60
XF25M00000S408	25.00000	±10	8	±30	-40 ~ +85	60
XF25M00000S410	25.00000	±10	10	±30	-40 ~ +85	60
XF25M00000S412	25.00000	±10	12	±30	-40 ~ +85	60
XF25M00000S416	25.00000	±10	16	±30	-40 ~ +85	60
XF25M00000S418	25.00000	±10	18	±30	-40 ~ +85	60
XF25M00000S420	25.00000	±10	20	±30	-40 ~ +85	60
XF25M00000S001	25.00000	±50	20	±50	-40 ~ +85	40
XF26M00000S409	26.00000	±10	9	±30	-40 ~ +85	60
XF26M00000S412	26.00000	±10	12	±30	-40 ~ +85	60
XF26M00000S415	26.00000	±10	15	±30	-40 ~ +85	60
XF26M00000S420	26.00000	±10	20	±30	-40 ~ +85	60
XF27M00000S410	27.00000	±10	10	±30	-40 ~ +85	60

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

ELECTRICAL PARAMETERS – FOR DIFFERENT PART CODE- Ta = 25°C

PART CODE	FREQUENCY RANGE MHz	FREQUENCY TOLERANCE		FREQUENCY STABILITY ppm	OPERATING TEMPE. RANGE	EQUIVALENT SERIES RESISTANCE Ω Max.
XF27M00000S412	27.00000	±10	12	±30	-40 ~ +85	60
XF27M00000S415	27.00000	±10	15	±30	-40 ~ +85	60
XF27M00000S418	27.00000	±10	18	±30	-40 ~ +85	60
XF27M00000S420	27.00000	±10	20	±30	-40 ~ +85	60
XF27M12000S410	27.12000	±10	10	±30	-40 ~ +85	60
XF27M12000S412	27.12000	±10	12	±30	-40 ~ +85	60
XF27M12000S420	27.12000	±10	20	±30	-40 ~ +85	60
XF28M00000S410	28.00000	±10	10	±30	-40 ~ +85	60
XF28M63636S420	28.63636	±10	20	±30	-40 ~ +85	60
XF30M00000S420	30.00000	±10	20	±30	-40 ~ +85	60
XF32M00000S409	32.00000	±10	9	±30	-40 ~ +85	40
XF32M00000S410	32.00000	±10	10	±30	-40 ~ +85	40
XF32M00000S411	32.00000	±10	11	±30	-40 ~ +85	40
XF37M40000S409	37.40000	±10	9	±30	-40 ~ +85	60
XF37M40000S412	37.40000	±10	12	±30	-40 ~ +85	40
XF37M40000S416	37.40000	±10	16	±30	-40 ~ +85	40
XF40M00000S408	40.00000	±10	8	±30	-40 ~ +85	40
XF40M00000S409	40.00000	±10	9	±30	-40 ~ +85	40
XF40M00000S410	40.00000	±10	10	±30	-40 ~ +85	40
XF40M00000S412	40.00000	±10	12	±30	-40 ~ +85	40

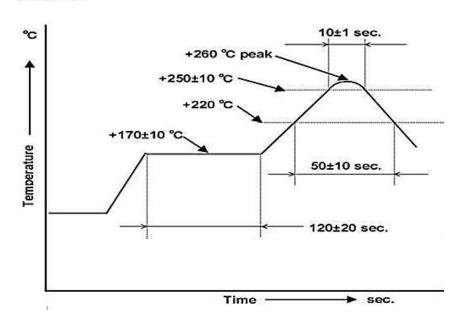
MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

ELECTRICAL PARAMETERS – FOR DIFFERENT PART CODE- Ta = 25°C

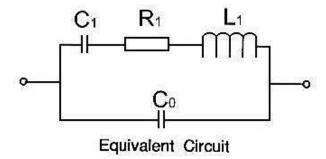
FREQUENCY RANGE	FREQUENCY	LOAD CAPACITANCE	FREQUENCY STABILITY	OPERATING TEMPE. RANGE	EQUIVALENT SERIES RESISTANCE
MHz	ppm	pF	ppm	°C	Ω Max.
40.00000	±10	15	±30	-40 ~ +85	40
40.00000	±10	20	±30	-40 ~ +85	40
48.00000	±10	9	±30	-40 ~ +85	40
48.00000	±10	20	±30	-40 ~ +85	40
50.00000	±10	9	±30	-40 ~ +85	40
50.00000	±10	20	±30	-40 ~ +85	40
50.00000	±10	10	±30	-40 ~ +85	40
52.00000	±10	20	±30	-40 ~ +85	60
54.00000	±10	15	±30	-40 ~ +85	40
	RANGE MHz 40.00000 40.00000 48.00000 50.00000 50.00000 52.00000	RANGE TOLERANCE MHz ppm 40.00000 ±10 48.00000 ±10 48.00000 ±10 50.00000 ±10 50.00000 ±10 52.00000 ±10	RANGE TOLERANCE CAPACITANCE MHz ppm pF 40.00000 ±10 15 40.00000 ±10 20 48.00000 ±10 9 48.00000 ±10 20 50.00000 ±10 9 50.00000 ±10 20 50.00000 ±10 10 52.00000 ±10 20	RANGE TOLERANCE CAPACITANCE STABILITY MHz ppm pF ppm 40.00000 ±10 15 ±30 40.00000 ±10 20 ±30 48.00000 ±10 9 ±30 50.00000 ±10 9 ±30 50.00000 ±10 9 ±30 50.00000 ±10 20 ±30 50.00000 ±10 10 ±30 52.00000 ±10 20 ±30	FREQUENCY RANGE FREQUENCY TOLERANCE LOAD CAPACITANCE FREQUENCY STABILITY TEMPE. RANGE MHz ppm pF ppm °C 40.00000 ±10 15 ±30 -40 ~ +85 40.00000 ±10 20 ±30 -40 ~ +85 48.00000 ±10 9 ±30 -40 ~ +85 50.00000 ±10 9 ±30 -40 ~ +85 50.00000 ±10 9 ±30 -40 ~ +85 50.00000 ±10 20 ±30 -40 ~ +85 50.00000 ±10 10 ±30 -40 ~ +85 52.00000 ±10 20 ±30 -40 ~ +85

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

RELIABILITY - MECHANICAL AND ENVIRONMENTAL ENDURANCE

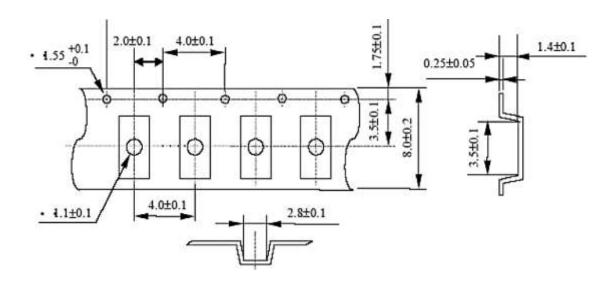

TEST ITEMS	TEST METHOD AND CONDITIONS	REQUIREMENTS
Drop	Free drop from 75cm height on a hard wooden board for 3 times. (Board is thickness more than 30mm.)	Frequency change: ≤5ppm Rr as specification
Shake	Shake frequency 10~55Hz, cyc1~2 minutes, swing 1.5mm, direction x/y/z, all 30 minutes, test after 1 hours.	Frequency change: ≤5ppm Rr as specification
Airproof	Put crystal into the pressure cabin with alcohol, keep pressure 0.4~0.5mpa 10 minutes, then take out and blow for 5 minutes	IR≥500MΩ
Weld	Temperature: 260±5°C Time: 3 seconds	90% exhibit tin ok
Humidity	Temperature: +40±2°C Humidity: 90%~95% R.H. Time: 250 hours	Frequency change: ≤5ppm Rr as specification
Low temperature	Temperature: -30±2°C Time: 250 hours put in room temperature, test after 1 hours.	Frequency change: ≤5ppm Rr as specification
High Temperature	Temperature: +85±2°C Time: 250 hours put in room temperature, test after 1 hours.	Frequency change: ≤5ppm Rr as specification
Temperature cycling	-30±3°C/30±3 min~+85±2°C/30±3min, 5 cycles	Frequency change: ≤5ppm Rr as specification

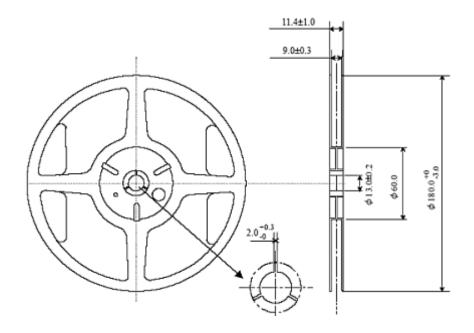
4/9/2025 11 sales@NextGenComponent.com



SUGGESTED REFLOW PROFILE - FOR REFERENCE ONLY

Condition:


EQUIVALENT CIRCUIT



MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

TAPE AND REEL - Unit: mm, 3000pcs/Reel

MHZ SMD CRYSTAL SEAM SEAL 3225 TYPE XF SERIES

IMPORTANT NOTES AND DISCLAIMER

- ROHS COMPLIANCE: The levels of RoHS restricted materials in this product are below the maximum
 concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an
 exempted application, in accordance with EU RoHS Directive (EU) 2015/863 EC (RoHS3). RoHS Test Report for
 this product can be obtained can be obtained at Download Center.
- REACH COMPLIANCE: REACH substances of high concern (SVHCs) information is available for this product.
 Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, REACH Test Report for this product can be obtained at Download Center.
- All Product parametric performance is indicated in the Electrical Characteristics for the listed herein test
 conditions, unless otherwise noted. Product performance may not be indicated by the Electrical
 Characteristics if operated under different conditions.
- 4. NextGen Component, Inc (*NextGen*) reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.
- 5. NextGen makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, not does NextGen assume any liability for application assistance or customer product design.
- 6. NextGen does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application. No license is granted by implication or otherwise under any intellectual property rights of NextGen.
- 7. NextGen products are not authorized for use as critical components in life support devices or systems without express written approval by NextGen.
- 8. NextGen requires that customers first obtain an RMA (Returned Merchandise Authorization) number prior to returning any products. Returns must be made within 30 days of the date of invoice, be in the original packaging, unused and like-new condition. At the time of quoting or purchasing, a product may say that it is Non-Cancelable/ Non-Returnable (NCNR). These products are not returnable and not refundable.